Dynamic Bayesian Network modeling for self- and cross-correcting target tracking

Tewodros A. Biresaw, Andrea Cavallaro, Carlo S. Regazzoni
{t.biresaw,a.cavallaro}@qmul.ac.uk, carlo.regazzoni@unige.it

1. Introduction
- Trackers may fail because of illumination changes, occlusions, pose variations and motion changes
- To reduce (remove) errors approaches exist that
 - self-correct an individual tracker
 - cross-correct trackers

2. Motivation
- Objective: to model self- and cross-correcting tracking with a unified framework
- Model: Dynamic Bayesian Network [1]
 - explicit evaluation and correction
 - provides general design guidelines

3. Dynamic Bayesian Network modeling

- x_k target state
- z_k observation
- k time step
- p_k performance variable
 - discrete values $p: 0 \leq p \leq (N_p - 1)$
- N_p number of evaluation classes
 - defines if correction is required
- c_k correction variable
 - discrete values $c: 0 \leq c \leq (N_c - 1)$
- N_c number of correction classes
 - defines the corrections on models

Self-correcting trackers
trackers use their own information for correction

Cross-correcting trackers
trackers use an external information source for correction

4. Model instantiations

Tracker-Level-Fusion [2]: trackers T^1 and T^2

- evaluation classes: $p \in \{0, 1, 2\}$
 - $p = 0$: good
 - $p = 1$: medium
 - $p = 2$: poor

Tracking-Learning-Detection [3]: tracker T^1 and detector D^2

- evaluation classes: $p \in \{0, 1\}$
 - $p = 0$: good
 - $p = 1$: poor

5. References

Acknowledgments
T. Biresaw was supported by the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments, which is funded by the Education, Audio-visual & Culture Executive Agency under the FPA no 2010-0012